Fibonacci Performance Monitoring Script

Salvador Gutierrez Portocarrero

August 5, 2025

Overview

This document describes a Python script designed to compute Fibonacci numbers and mon-
itor system performance metrics such as execution time, CPU usage, and memory usage
during the calculation.

The results are visualized using plots and saved to a CSV file with a name based on the
current date. The file is saved to a predefined directory, and it is used as an overview of the
computation time to evaluate processor and system performance.

Algorithm Description
The script uses the Fibonacci sequence defined recursively as:

0 ifn=0
F(n)=<1 ifn=1
Fn—1)+F(n—-2) ifn>1

This version of the function is implemented recursively, which is computationally expensive
for larger values of n. While inefficient, the recursive version is intentionally used here to
stress test CPU and memory performance, allowing us to visualize resource scaling with
increasing computation load.

Performance Monitoring

For each selected value of n, the following metrics are measured:
e Execution Time: Time taken to compute F(n)
e CPU Usage: CPU percentage usage immediately after the computation

e Memory Usage: System memory usage percentage after computation



Fibonacci Sequence Definition

The Fibonacci sequence is a series of numbers where each term is the sum of the two preceding
ones. It begins with:

and follows the recurrence relation:

Fn)=Fn—-1)+F(n—2), forn>2

The sequence begins:
0, 1, 1, 2, 3, 5, 8 13, 21, 34, ...

With detailed calculations:

F(0)=0
F(1)=1
F2)=F1)+ F(0)=1+0=1
FB)=F2)+F(1)=1+4+1=
F4)=FQ3)+F(2)=2+1=
F(B)=F(4)+F(3)=3+2=5
F6)=F(5)+ F(4)=5+3=
F(T)=F(6)+F(5)=8+5=13
F@) =F(7)+ F(6)=13+8=21
F9)=F@8)+F(7)=21+13=34
F(10) = F(9) 4+ F(8) = 34 + 21 = 55



Visual Representation

Below is a visual representation of the Fibonacci sequence (e.g., bar chart), Figure [1}

110 Fibonacci Sequence (F(0) to F(10))
2.00

1.75
1.50
1.25
L 1.00
0.75
0.50
0.25
0.00

n

Figure 1: Fibonacci sequence visualized as a bar chart

Number of Additions

The number of additions required to compute F'(n) recursively is approximately:

Additions(n) =~ F(n+1) — 1

Therefore, to compute F(50), the number of additions is:

Additions(50) = F(51) — 1 = 20,365,011,074 — 1 =[20,365,011,073

This exponential growth makes the naive recursive method impractical for large n.

The Fibonacci sequence is a series of numbers where each number is the sum of the two
preceding ones. It starts from 0 and 1:

0 ifn<0
F(n)=1<1 ifn=1
Fn—1)+Fn-2) ifn>1

This recursive formula can be implemented directly in Python using a function. The following
code snippet shows the implementation used in this script:



def fibonacci(n):
if n <= 0:
return O
elif n == 1:
return 1
else:
return fibonacci(n - 1) + fibonacci(n - 2)

Listing 1: Recursive Fibonacci Function

This recursive approach is simple but inefficient for large n, due to repeated recalculations of
the same subproblems. For higher values, an iterative or memoized version is recommended.
However, this script is used to computed repeated and costly summations.

Main Loop Code

The following Python code iterates over values of n, runs the Fibonacci function, collects
system metrics, and stores the results:

if __name__ == :
ns = range(l, 3) # You can increase the range for more tests
times = []
cpu_usages = []
memory_usages = []

for n in ns:
print (£ )
time_taken, cpu_usage, memory_usage =
run_algorithm_and_monitor (n)
times.append(time_taken)
cpu_usages .append (cpu_usage)
memory_usages .append (memory_usage)

plot_results(ns, times, cpu_usages, memory_usages)

Listing 2: Main loop for running Fibonacci and monitoring resources

Output and Saving

The results are stored in a Pandas DataFrame and saved as a CSV file. The filename includes
the current date and is saved in a specified directory, Figure [2]

Dependencies

The script uses the following Python libraries:




Time Taken CPU Usage Memory Usage

o
S

5000 (

5
@

40

5
=)

4000 -

w
S

v

£

3000 A

v
0

Time (seconds)
CPU Usage (%)

N
5

Memory Usage (%)

2000 A

u
o

IS
3

1000 A

N
>

Figure 2: Plot of Execution Time, CPU Usage, and Memory Usage vs. Fibonacci n

psutil for system monitoring

time and datetime for timing and file naming

matplotlib for plotting

pandas for tabular data and CSV export

os for file path management

Computational Cost: Calculating F'(50)

The recursive Fibonacci function defined as:

def fibonacci(n):
if n <= 0:
return O
elif n == 1:
return 1
else:
return fibonacci(n - 1) + fibonacci(n - 2)

Listing 3: Recursive Fibonacci function




