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Origin of the Levey-Jennings Chart

In 1950, Stanley Levey and E.R. Jennings published a paper titled: The Use of Control
Charts in the Clinical Laboratory, in the journal American Journal of Clinical Pathol-
ogy. [1] Their goal was to adapt the principles of Statistical Process Control (SPC) �
which were already widely used in manufacturing � to clinical chemistry, where ensuring
the precision and reliability of laboratory measurements is critical.

The chart they introduced is essentially a Shewhart control chart using standard
deviation-based control limits (±1σ,±2σ,±3σ) centered around the mean. [2] However,
instead of plotting means of samples, it plots individual test results.

Building on the original Levey-Jennings concept, we explore how this type of control
chart can be extended through real-time correlation, and automated using Python. To
illustrate this, we �rst generate simulated data sets that mimic laboratory measurement
variability. These Python-based simulations help to demonstrate how process control
behavior can be modeled computationally, providing a foundation for automated quality
monitoring.

How to Obtain the Data Using Simulations

This section explores how varying the standard deviation a�ects the spread of simulated
data. By generating multiple samples from normal distributions, we can simulate random
processes and observe how the normal distribution changes based on di�erent spread
parameter, normal function scale or standard deviation.

In such simulations, we could pick a process mean (e.g, µ = 50), then de�ne the shape
and spread of the random number distribution function. This parameter, as mentioned
earlier, determine how the random values are propagated. Speci�cally, the standard
deviation is often referred to as the scale of the normal distribution in random number
generation, and we will use this term from now on to avoid any confusion.

Figure 1a shows the resulting probability density functions. The distribution with
the smaller standard deviation is sharply peaked, while the distribution with the larger
standard deviation is broader.

� Scale = 0.3: Represents a distribution with a wider spread.

� Scale = 0.05: Represents a distribution with a narrower, sharper peak.

These simulated datasets demonstrate how the choice of scale (random number stan-
dard deviation) a�ects the variability of the generated random numbers. In Figure 1b,
we propagate a mean value with arbitrary units, AU, with value of µ = 50. In real terms,
the variability of a process is crucial in quality control and SPC contexts, as greater
spread can lead to more frequent deviations beyond control limits.
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(a) Comparison of two normal distributions with di�erent scales.

(b) Levey-Jennings plots for the same structure using scales values of 0.3 (left)

and 0.05 (right) over �ve reactors.

Figure 1: Simulation Framework

Levey-Jennings Chart with Dynamic Regression Win-

dow

Jumping to the enhanced implementation of the Levey-Jennings plots. We included two
types of linear regression analyses for all reactors:

� Full Data Regression: A linear �t considering all available data points, capturing
the overall trend across the entire dataset.

� Recent Data Regression: A linear �t applied to the most recent n data points
(where n can be dynamically selected), which highlights recent trends or shifts that
may not be visible in the full dataset �t.

This approach provides more nuanced insights into both long-term stability and short-
term variation within each reactor's measurements. Additionally, a linear drift (slope)
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was intentionally introduced into the simulated process data. Speci�cally, a constant
increment of 0.0002 AU is added to the characteristic level (CL) with each event, meaning
that over 10,000 events, the CL will shift by approximately 2 AU.

Control limits are calculated using the mean and standard deviation of the selected
dataset, corresponding to ±1σ, ±2σ, and ±3σ thresholds, which are clearly marked on
the chart. The regression lines are plotted using distinct line styles and colors for easy
di�erentiation, with a dynamic legend that re�ects the current choice of n for the recent
data regression.

This visualization technique enhances monitoring sensitivity and supports more in-
formed decision-making in process control. For example, a noticeable mean drift in
Reactor 1 of Process A is clearly visible at the �nal data point, as shown in Figure 2a.
This signi�cant deviation is apparent even to the untrained eye.

However, more subtle drifts in the process can remain di�cult to detect, even with
the aid of linear trend lines. Figure 2c illustrates such a case, where a drift is present in
the same dataset�the same �nal points of Reactor 1�but is much less obvious. This
is challenging for the even for a trained engineer, thus we need to use other resources to
dredge out the information.

(a) Process A - Mean (b) Process A - Sigma

(c) Process B - Mean (d) Process B - Sigma

Figure 2: Levey-Jennings charts for �ve reactors showing full data regression (solid lines)
and recent n-point regression (dashed lines) with control limits at ±1σ, ±2σ, and ±3σ.
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1 Control Limits and Regression Data Relations

The use of Levey-Jennings control limits�speci�cally the calculated �eet center line (CL),
weighted by the historical slope of the process�is sensitive enough to detect changes oc-
curring in individual reactors within the �eet. Figure 3b con�rms observations consistent
with the latest point linear trend analysis. However, in the case of Process B, the reactor
drift was initially obscured by the natural variability of the distribution. By incorporating
�eet-level parameters into the linear trend weighting, the heatmap visualization makes it
possible to clearly identify the underlying issue�Reactor 1�as shown in Figure 3d.

Note that we have simulated two means and two standard deviations for Processes A
and B. This setup was chosen both to evaluate the e�ect of the selected random seed and
to generate a richer color matrix, allowing us to demonstrate how this code and analytical
work�ow can scale to multiple variables. Because the same random seed was used for
both processes, the random number sequences for A and B are identical�resulting in
color matrices with the same underlying numerical values for sigma. You can notice the
equality on sigma in Figures 2b and 2d, which are similar but they are di�erent throws.
Mean values di�er due to the addition of di�erent slope values. SPC charts for the mean
and sigma of Structure B are not shown in order to avoid introducing unnecessary data
noise.

(a) Process A - Mean
(b) Process B - All Reactors Heatmap

(c) Process B - Mean
(d) Process B - All Reactors Heatmap

Figure 3: Levey-Jennings charts for �ve reactors showing full data regression (solid lines)
and recent n-point regression (dashed lines) with control limits at ±1σ, ±2σ, and ±3σ.

In addition to the heatmaps, bar plots o�er a complementary and quantitative per-
spective by presenting the ratio of the average absolute delta regression for each reactor
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against the �eet-wide category-speci�c average. This normalization allows us to visu-
ally compare how far each reactor deviates from the expected behavior, considering the
combined e�ect of slope and control limit statistics. Reactors with values signi�cantly
greater than 1 exhibit abnormal behavior relative to their peers and stand out clearly in
the bar chart. For instance, Reactor 1�previously identi�ed as a potential culprit of
process drift in the heatmap�also registers a high deviation in the bar plot, reinforcing
its role as an outlier in the process. These bar plots thus provide a clear and intuitive
diagnostic tool for ranking reactor stability and detecting process shifts. Notice how the
two visualizations�heatmaps and bar plots�are complementary: together, they allow us
to both visualize and con�rm which reactors or processes are drifting, enabling targeted
investigation into potential root causes.

Figure 4: Bar Graphics
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2 Correlative Advance Statistical Process Control (SPC)

Work�ow

This section explains the Python code implementing the Correlative Advance Statistical
Process Control (SPC) method for reactor performance monitoring.

The code processes tool data, performs statistical analysis, and generates visualiza-
tions to detect process drift and variability across multiple reactors.

2.1 Data Loading and Setup

� CSV data is loaded into a Pandas DataFrame.

� The �le name encodes parameters such as slope, drift, reactor excluded, and scale
factor.

� Reactors are sorted numerically to ensure consistent plotting order.

� The structures and types of measurements analyzed are:

� Structure A � Mean

� Structure A � Sigma

� Structure B � Mean

� Structure B � Sigma

2.2 Levey�Jennings Chart Generation

� For each Structure�Type combination, data is �ltered and plotted as a Levey�Jennings
(LJ) control chart.

� The LJ chart includes:

� Mean and ±1σ, ±2σ, ±3σ control lines.

� Scatter points colored by reactor.

� Linear regression lines:

1. All data points � solid line.

2. Last n points � dashed line (captures recent trends).

� A speci�ed reactor can be excluded from control limit calculations but still included
in regression.

2.3 Regression Statistics Collection

� The slope and intercept are computed for each regression line.

� The last-n regression is useful for detecting recent drifts that may be masked in full
data analysis.

� All regression stats are stored in a global list and later merged with control limit
data.
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2.4 Merging Control Limits with Regression Data

� Mean, standard deviation, and±σ thresholds are calculated for each Structure�Type�Reactor
combination.

� Delta_Regression is computed as:

∆Regression = Slope_All− (CL_Mean− Intercept_All)

� This measures deviation between regression trend and the baseline process mean.

2.5 Category-Speci�c SPC Ratio Analysis

� The average absolute Delta_Regression is calculated per reactor.

� For each Structure�Type category, the category-speci�c average (excluding the cho-
sen reactor) is computed.

� The ratio:

Ratio_to_Category_Avg =
Avg_Abs_Delta_Regression

Category_Avg_Abs_Delta

is used to normalize performance across structures and types.

2.6 Visualization Outputs

The code produces:

1. Bar Plots � Comparing reactor performance ratios by category.

2. Heatmaps � Showing relative deviations across reactors.

3. Scatter Plots � Highlighting structure and type relationships.

2.7 Data Saving

� All intermediate and �nal data tables are saved as CSV �les.

� File names are generated using f-strings to include run parameters (e.g., slope,
drift, reactor exclusion).

3 Conclusion

This work�ow combines SPC, regression analysis, and multi-reactor correlation to:

� Identify drifting tools early.

� Quantify deviations relative to process baselines.

� Provide actionable insights for process engineers.

8



Figure 5: Code Full Work�ow
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